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Moving Beyond Linearity

 The truth is never linear!

 Or almost never!

 But often the linearity assumption is good enough

 When its not . . .

 polynomials,

 step functions,

 splines,

 local regression, and

 generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear 

models
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1. Polynomial Regression

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 +⋯+ 𝛽𝑝𝑥𝑖

𝑝
+ 𝜖𝑖
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Details

 Create new variables 𝑋1 = 𝑋, 𝑋2 = 𝑋2, etc and then treat as multiple linear 

regression

 Not really interested in the coefficients; more interested in the fitted function 

values at any value 𝑥0 (pointwise):
መ𝑓 𝑥0 = መ𝛽0 + መ𝛽1𝑥0 + መ𝛽2𝑥0

2 + መ𝛽3𝑥0
3 + መ𝛽4𝑥0
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 Since መ𝑓 𝑥0 is a linear function of the መ𝛽𝑙, can get a simple expression for 

pointwise-variances Var[ መ𝑓 𝑥0 ] at any value 𝑥0. In the figure we have 

computed the fit and pointwise standard errors on a grid of values for 𝑥0. We 

show መ𝑓 𝑥0 ± 2 ∙ 𝑠𝑒 መ𝑓 𝑥0

 We either fix the degree 𝑝 at some reasonably low value, else use cross-

validation to choose 𝑝
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Details continued

 Logistic regression follows naturally. For example, in figure we model

Pr 𝑦𝑖 > 250 𝑥𝑖 =
exp(𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖

2 +⋯+ 𝛽𝑝𝑥𝑝
𝑝
)

1 + 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 +⋯+ 𝛽𝑝𝑥𝑝

𝑝

 To get confidence intervals, compute upper and lower bounds on the logit scale, and then 

invert to get on probability scale

 Can do separately on several variables—just stack the variables into one matrix, 

and separate out the pieces afterwards (see GAMs later)

 Can fit using poly = PolynomialFeatures(4) in formula

 Caveat: polynomials have notorious tail behavior — very bad for extrapolation
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2. Step Functions (Piecewise-constant)

 Another way of creating transformations of a variable — cut the variable into 

distinct regions
𝐶0 𝑋 = 𝐼 𝑋 < 35 , 𝐶1 𝑋 = 𝐼 35 ≤ 𝑋 < 50 ,… , 𝐶3 𝑋 = 𝐼 𝑋 ≥ 65

𝑦𝑖 = 𝛽0 + 𝛽1𝐶1 𝑥𝑖 + 𝛽2𝐶2 𝑥𝑖 +⋯+ 𝛽𝐾𝐶𝐾 𝑥𝑖 + 𝜖𝑖
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Step functions continued

 Easy to work with. Creates a series of dummy variables representing each 

group

 Useful way of creating interactions that are easy to interpret. For example, 

interaction effect of Year and Age:

I(Year < 2005) · Age,   I(Year ≥ 2005) · Age

would allow for different linear functions in each age category

 In Python: pd.cut(age,4) or pd.cut(age, [0, 25, 40, 65, 90])

 Choice of cutpoints or knots can be problematic. For creating nonlinearities, 

smoother alternatives such as splines are available
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Basis function

 Instead of fitting the model in X, we fit
𝑦𝑖 = 𝛽0 + 𝛽1𝑏1 𝑥𝑖 + 𝛽2𝑏2 𝑥𝑖 +⋯+ 𝛽𝐾𝑏𝐾 𝑥𝑖 + 𝜖𝑖

 For polynomial regression, 𝑏𝑗 𝑥𝑖 = 𝑥𝑖
𝑗

 For step function, 𝑏𝑗 𝑥𝑖 = 𝐼(𝑐𝑗 ≤ 𝑥𝑖 < 𝑐𝑗+1)

 We can think of the model as a standard linear model with predictors 

𝑏1 𝑥𝑖 , 𝑏2 𝑥𝑖 , … , 𝑏𝐾 𝑥𝑖
 We can use least squares to estimate the unknown regression coefficients

 All of the inference tools for linear models can be used, such as standard errors for 

the coefficient estimates and F-statistics for the model’s overall significance…
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3.1 Regression Splines - Linear Splines

 How can we fit a piecewise degree-𝑑 polynomial under the constraint that it 

(and possibly its first 𝑑 − 1 derivatives) be continuous?

 It turns out that we can use the basis function to represent the regression spline

 A linear spline with knots at 𝜉𝑘, 𝑘 = 1, . . . , 𝐾 is a piecewise linear polynomial 

continuous at each knot

 We can represent this model as

𝑦𝑖 = 𝛽0 + 𝛽1𝑏1 𝑥𝑖 + 𝛽2𝑏2 𝑥𝑖 +⋯+ 𝛽𝐾+1𝑏𝐾+1 𝑥𝑖 + 𝜖𝑖
Where the 𝑏𝑘 are basis functions (with one more truncated basis per knot)

𝑏1 𝑥𝑖 = 𝑥𝑖
𝑏𝑘+1 𝑥𝑖 = (𝑥𝑖 − 𝜉𝑘)+, 𝑘 = 1,… , 𝐾

Here the ()+ means positive part; i.e.

(𝑥𝑖 − 𝜉𝑘)+= ቊ
𝑥𝑖 − 𝜉𝑘 𝑖𝑓𝑥𝑖 > 𝜉𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The blue curve 

represents the 

true function



3.2 Regression Splines - Piecewise Polynomials

 Instead of a single polynomial in 𝑋 over its whole domain, we can rather use 

different polynomials in regions defined by knots

𝑦𝑖 = ൝
𝛽01 + 𝛽11𝑥𝑖 + 𝛽21𝑥𝑖

2 + 𝛽31𝑥𝑖
3 + 𝜖𝑖 𝑖𝑓 𝑥𝑖 < 𝑐;

𝛽02 + 𝛽12𝑥𝑖 + 𝛽22𝑥𝑖
2 + 𝛽32𝑥𝑖

3 + 𝜖𝑖 𝑖𝑓 𝑥𝑖 ≥ 𝑐.

 If we place 𝐾 different knots throughout the range of 𝑋, then we will end up 

fitting 𝐾 + 1 different cubic polynomials

 Better to add constraints to the polynomials, e.g. continuity

 The general definition of a degree-𝑑 spline is that it is a piecewise degree-𝑑
polynomial, with continuity in derivatives up to degree 𝑑 − 1 at each knot
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3.3 Regression Splines - Cubic Splines

 A cubic spline with knots at 𝜉𝑘, 𝑘 = 1, . . . , 𝐾 is a piecewise cubic polynomial 

with continuous derivatives up to order 2 at each knot

 Again we can represent this model with truncated power basis functions (𝐾 + 4
degrees of freedom)

𝑦𝑖 = 𝛽0 + 𝛽1𝑏1 𝑥𝑖 + 𝛽2𝑏2 𝑥𝑖 +⋯+ 𝛽𝐾+3𝑏𝐾+3 𝑥𝑖 + 𝜖𝑖

𝑏1 𝑥𝑖 = 𝑥𝑖
𝑏2 𝑥𝑖 = 𝑥𝑖

2

𝑏3 𝑥𝑖 = 𝑥𝑖
3

𝑏𝑘+3 𝑥𝑖 = (𝑥𝑖 − 𝜉𝑘)+
3 , 𝑘 = 1,… , 𝐾

Where

(𝑥𝑖 − 𝜉𝑘)+
3= ቊ

(𝑥𝑖 − 𝜉𝑘)
3 𝑖𝑓𝑥𝑖 > 𝜉𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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https://math.stackexchange.com/questions/293542/what-is-the-difference-between-cubic-splines-and-cubic-b-splines
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3.4 Regression Splines - Natural Cubic Splines

 A natural cubic spline extrapolates linearly beyond the boundary knots. This 

adds 4 = 2 × 2 extra constraints, and allows us to put more internal knots for 

the same degrees of freedom as a regular cubic spline

 It has  zero  2nd  and  3rd derivative outside the boundary knots
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https://stats.stackexchange.com/questions/233232/the-definition-of-natural-cubic-splines-for-regression


Natural Cubic Spline Basis

 A natural cubic spline model with 𝐾 knots is represented by 𝐾 basis functions:

𝑓(𝑥𝑖) = 𝑦𝑖 = 𝛽0𝑏0 𝑥𝑖 + 𝛽1𝑏1 𝑥𝑖 + 𝛽2𝑏2 𝑥𝑖 +⋯+ 𝛽𝐾−1𝑏𝐾−1 𝑥𝑖 + 𝜖𝑖

𝑏0 𝑥𝑖 = 1
𝑏1 𝑥𝑖 = 𝑥𝑖

𝑏𝑘+1 𝑥𝑖 = 𝑑𝑘−1 𝑥𝑖 − 𝑑𝐾−2 𝑥𝑖
where

𝑑𝑘 𝑥𝑖 =
(𝑥𝑖 − 𝜉𝑘+1)

3−(𝑥𝑖 − 𝜉𝐾)
3

𝜉𝐾 − 𝜉𝑘+1
, 𝑘 = 0, … , 𝐾 − 2
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Regression Splines

 Fitting splines in Python is easy: 𝑏𝑠(x, ...) for any degree splines, and 𝑐𝑟(x, ...) 

for natural cubic splines with any degree of freedom
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Regression Splines

 The regression spline is most flexible in regions that contain a lot of knots, 

because in those regions the polynomial coefficients can change rapidly

 Hence, one option is to place more knots in places where we feel the function might vary 

most rapidly, and to place fewer knots where it seems more stable

 While this option can work well, in practice it is common to place knots in a uniform 

fashion

 We have fit a natural cubic spline with three knots, the knot locations were chosen automatically 

as the 25th, 50th, and 75th percentiles of age

 Another way to do this is to specify the desired degrees of freedom, and then have the software 

automatically place the corresponding number of knots at uniform quantiles of the data
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Regression Splines

 How many knots should we use, or equivalently how many degrees of freedom 

should our spline contain?

 One option is to try out different numbers of knots and see which produces the best looking 

curve

 A more objective approach is to use cross-validation

 With this method, we remove a portion of the data (say 10%), fit a spline with a certain 

number of knots to the remaining data, and then use the spline to make predictions for the 

held-out portion

 We repeat this process multiple times until each observation has been left out once, and 

then compute the overall cross-validated RSS

 This procedure can be repeated for different numbers of knots 𝐾

 Then the value of 𝐾 giving the smallest test RSS is chosen
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Regression Splines

 Ten-fold cross-validated mean squared errors for selecting the degrees of 

freedom when fitting splines to the Wage data. The response is wage and the 

predictor age. Left: A natural cubic spline. Right: A cubic spline
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Regression Splines

 Figure 7.6 shows ten-fold cross-validated mean squared errors for splines with 

various degrees of freedom fit to the Wage data

 The left-hand panel corresponds to a natural spline and the right-hand panel to 

a cubic spline

 The two methods produce almost identical results, with clear evidence that a 

one-degree fit (a linear regression) is not adequate

 Both curves flatten out quickly, and it seems that three degrees of freedom for 

the natural spline and four degrees of freedom for the cubic spline are quite 

adequate
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Knot placement

 One strategy is to decide 𝐾, the number of knots, and then place them at 

appropriate quantiles of the observed 𝑋

 A cubic spline with 𝐾 knots has 𝐾 + 4 parameters or degrees of freedom

 A natural spline with 𝐾 knots has 𝐾 degrees of freedom

25

Comparison of a degree-14 

polynomial and a natural

cubic spline, each with 15df.

https://stats.stackexchange.com/questions/517375/splines-relationship-of-knots-degree-and-degrees-of-freedom


4. Smoothing Splines

 Consider this criterion for fitting a smooth function 𝑔(𝑥) to some data:

min
𝑔∈𝑆

෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑔(𝑥𝑖))
2+λන𝑔′′(𝑡)2𝑑𝑡

 The first term is RSS, and tries to make 𝑔(𝑥) match the data at each 𝑥𝑖
 The second term is a roughness penalty and controls how wiggly 𝑔(𝑥) is. It is 

modulated by the tuning parameter λ ≥ 0
 The smaller 𝜆, the more wiggly the function, eventually interpolating 𝑦𝑖 when 𝜆 = 0

 As 𝜆 → ∞, the function 𝑔(𝑥) becomes linear
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Smoothing Splines

 The unique minimizer of this penalized RSS is a shrunken version of natural 

cubic spline with knots at the unique values of 𝑥𝑖, 𝑖 = 1, . . . , 𝑛

 Seems like there will be 𝑛 features and presumably overfitting of the data. But, 

the smoothing term shrinks the model towards the linear fit

 Effective degrees of freedom decrease from 𝑛 to 2 as we increase λ

 Solution:

𝑓 𝑥 =෍

𝑖=1

𝑛

𝑏𝑖 𝑥 𝛽𝑖

Where 𝑏1 𝑥𝑖 = 1, 𝑏2 𝑥𝑖 = 𝑥𝑖 , 𝑏𝑖+1 𝑥𝑖 = 𝑑𝑖−1 𝑥𝑖 − 𝑑𝑛−2 𝑥𝑖 , 𝑖 = 2,… , 𝑛 − 1 are the  

Natural Cubic Spline Basis
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Smoothing Splines continued

 The solution is a natural cubic spline, with a knot at every unique value of 𝑥𝑖. 
The roughness penalty still controls the roughness via 𝜆

 Some details

 Smoothing splines avoid the knot-selection issue, leaving a single 𝜆 to be chosen

 The algorithmic details are too complex to describe here

 The vector of 𝑛 fitted values can be written as ො𝑔λ = 𝑆λ𝑦, where 𝑆λ is a 𝑛 × 𝑛 matrix 

(determined by the 𝑥𝑖 and λ)

 The effective degrees of freedom are given by

𝑑𝑓λ =෍

𝑖=1

𝑛

{𝑆λ}𝑖𝑖
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Smoothing Splines – choosing 𝜆

 We can specify df rather than 𝜆! 

 The leave-one-out (LOO) cross-validated error is given by

𝑅𝑆𝑆𝑐𝑣 𝜆 =෍

𝑖=1

𝑛

(𝑦𝑖 − ො𝑔𝜆
(−𝑖)

)2=෍

𝑖=1

𝑛
𝑦𝑖 − ො𝑔λ(𝑥𝑖)

1 − {𝑆λ}𝑖𝑖

2

 The notation ො𝑔𝜆
(−𝑖)

indicates the fitted value for this smoothing spline evaluated 

at 𝑥𝑖 , where the fit uses all of the training observations except for the 𝑖th
observation 𝑥𝑖 , 𝑦𝑖
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Smoothing Splines
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5. Local Regression

 Local regression computes the fit at a target point 𝑥0 using only the regression 

nearby training observations, which is described in Algorithm 7.1

 In Step 3 of Algorithm 7.1, the weights 𝐾𝑖0 will differ for each value of 𝑥0.

 At a new point, we need to fit a new weighted least squares regression model 

by minimizing (7.14) for a new set of weights

 Local regression is referred to as a memory-based procedure, because we need 

all the training data each time we wish to compute a prediction
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Local Regression

 Figure next page illustrates a simulated data, with one target point near 0.4, and 

another near the boundary at 0.05

 The blue line represents the function 𝑓(𝑥) from which the data were generated, 

and the light orange line corresponds to the local regression estimate መ𝑓(𝑥)

 The yellow bell-shape indicates weights assigned to each point, decreasing to 

zero with distance from the target point. The fitted value መ𝑓(𝑥0) at 𝑥0 is 

obtained by fitting a weighted linear regression (orange line segment)
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Local Regression

 With a sliding weight function, we fit separate linear fits over the range of 𝑋 by 

weighted least squares

 See text for more details, and lowess() function in Python
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Local Regression

 Choices: span 𝑠 (Step 1), the weighting function 𝐾 (Step 2), and whether to fit 

a linear, constant, or quadratic regression (Step 3)

 The most important choice is the span 𝑠, similar to the tuning parameter 𝜆 in 

smoothing splines: it controls the flexibility of the non-linear fit

 The smaller the value of 𝑠, the more local and wiggly will be our fit; alternatively, a very 

large value of s will lead to a global fit to the data using all of the training observations

 We can use cross-validation to choose 𝑠, or we can specify it directly

 Figure 7.10 displays local linear regression fits on the Wage data, using two 

values of 𝑠: 0.7 and 0.2

 The fit obtained using 𝑠 = 0.7 is smoother than that obtained using 𝑠 = 0.2
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Local Regression

36



Local Regression

 In a setting with multiple features 𝑋1, 𝑋2, … , 𝑋𝑝, one very useful generalization 

involves fitting a multiple linear regression model that is global in some 

variables, but local in another, such as time. Such varying coefficient models 

are a useful way of adapting a model to the most recently gathered data

 Local regression also generalizes very naturally when we want to fit models 

that are local in a pair of variables 𝑋1 and 𝑋2, rather than one. We can simply 

use two-dimensional neighborhoods, and fit bivariate linear regression models 

using the observations that are near each target point in two-dimensional space.
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GAMs for Regression Problems

 A natural way to extend the multiple linear regression model
𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝𝑋𝑖𝑝 + 𝜖𝑖

in order to allow for non-linear relationships between each feature and the response

 The generalized additive model (GAM) can be written as

𝑦𝑖 = 𝛽0 +෍

𝑗=1

𝑝

𝑓𝑗(𝑥𝑖𝑗) + 𝜖𝑖

 It is called an additive model because we calculate a separate 𝑓𝑗 for each 𝑋𝑗, 

and then add together all of their contributions
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GAMs for Regression Problems

 The beauty of GAMs is that we can use these methods as building blocks for 

fitting an additive model. Consider the task of fitting the model on the Wage 

data:
𝑤𝑎𝑔𝑒 = 𝛽0 + 𝑓1 𝑦𝑒𝑎𝑟 + 𝑓2 𝑎𝑔𝑒 + 𝑓3 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜖

 Year and age are quantitative variables

 Education is a qualitative variable with five levels: <HS, HS, <Coll, Coll, >Coll, referring 

to the amount of high school or college education that an individual has completed

 𝑓1 and 𝑓2: natural splines

 𝑓3: separate constant for each level, via the dummy variable approach

 Figure next page shows the fitted model using least squares
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Generalized Additive Models

 Allows for flexible nonlinearities in several variables, but retains the additive 

structure of linear models
𝑦𝑖 = 𝛽0 + 𝑓1 𝑥𝑖1 + 𝑓2 𝑥𝑖2 +⋯+ 𝑓𝑝 𝑥𝑖𝑝 + 𝜖𝑖
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Generalized Additive Models

 The above figure can be easily interpreted

 The left-hand panel indicates that holding age and education fixed, wage tends 

to increase slightly with year; this may be due to inflation

 The center panel indicates that holding education and year fixed, wage tends to 

be highest for intermediate values of age, and lowest for the very young and 

very old

 The right-hand panel indicates that holding year and age fixed, wage tends to 

increase with education: the more educated a person is, the higher their salary, 

on average
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Generalized Additive Models

 Figure 7.12 shows a similar triple of plots, but this time 𝑓1, 𝑓2: smoothing 

splines with 4 and 5 d.f.s, respectively

 The fitted functions in Figure 7.12 and the previous figure look rather similar

 In most situations, the differences in the GAMs obtained using smoothing splines versus 

natural splines are small
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Pros and Cons of GAMs

 The advantages and limitations of a GAM

 GAMs allow us to fit a non-linear 𝑓𝑗 to each 𝑋𝑗 , so that we can automatically model non-

linear relationships

 The non-linear fits can potentially make more accurate predictions for the response 𝑌

 Because the model is additive, we can still examine the effect of each 𝑋𝑗 on 𝑌 individually 

while holding all of the other variables fixed

 The smoothness of the function 𝑓𝑗 for the variable 𝑋𝑗 can be summarized via degrees of 

freedom
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Pros and Cons of GAMs

 The advantages and limitations of a GAM

 The main limitation of GAMs is that the model is restricted to be additive: important 

interactions can be missed

 We can manually add interaction terms to the GAM model by including additional 

predictors of the form 𝑋𝑗 × 𝑋𝑘

 In addition, we can add low-dimensional interaction functions of the form 𝑓𝑗𝑘(𝑋𝑗 , 𝑋𝑘) into 

the model; such terms can be fit using two-dimensional smoothers such as local regression, 

or two-dimensional splines

 For fully general models, we have to look for even more flexible approaches 

such as random forests and boosting, described in Chapter 8. GAMs provide a 

useful compromise between linear and fully nonparametric models
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GAMs for Classification Problems

 GAMs can also be used when 𝑌 is qualitative

 Assume 𝑌 takes on values zero or one, and let

𝑝(𝑋) = Pr(𝑌 = 1|𝑋)

 Extend the logistic regression model to the logistic regression GAM:

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝑓1 𝑋1 + 𝑓2 𝑋2 +⋯+ 𝑓𝑝 𝑋𝑝
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GAMs for Classification Problems

 We fit a GAM to the Wage data to predict the probability that an individual’s 

income exceeds $250,000 per year:

𝑝 𝑋 = Pr(𝑤𝑎𝑔𝑒 > 250|𝑦𝑒𝑎𝑟, 𝑎𝑔𝑒, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛)

 Consider the GAM:

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1 × 𝑦𝑒𝑎𝑟 + 𝑓2 𝑎𝑔𝑒 + 𝑓3 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛

 𝑓2: smoothing spline with five d.f.

 𝑓3: a step function, with dummy variables for each level of education

 The resulting fit is shown in Figure 7.13
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GAMs for Classification Problems

 The last panel looks suspicious, with very wide confidence intervals for level 

<HS. In fact, there are no ones for that category: no individuals with less than 

a high school education make more than $250000 per year

 Hence we refit the GAM, excluding the individuals with less than a high school 

education

 The resulting model is shown in Figure 7.14
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GAMs for Classification Problems
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We observe that age and 

education have a much 

larger effect than year on 

the probability of being a 

high earner



Appendix
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Natural Cubic Spline Basis

 Since each  of  these  basis  functions  has  zero  2nd  and  3rd derivative 

outside the boundary knots, so does 𝑓(𝑥𝑖) defined below

 When 𝑥𝑖 ≤ 𝜉𝑘

𝑓 𝑥𝑖 = 𝛽0 +෍

𝑘=1

𝐾

𝛽𝑘𝑏𝑘 𝑥𝑖 = 𝛽0 + 𝛽1𝑥𝑖 → 𝑓 2 𝑥𝑖 = 𝑓 3 𝑥𝑖 = 0

 When 𝑥𝑖 > 𝜉𝑘

𝑏𝑘+1 𝑥𝑖 =
(𝑥𝑖 − 𝜉𝑘)

3−(𝑥𝑖 − 𝜉𝐾)
3

𝜉𝐾 − 𝜉𝑘
−
(𝑥𝑖 − 𝜉𝐾−1)

3−(𝑥𝑖 − 𝜉𝐾)
3

𝜉𝐾 − 𝜉𝐾−1

Since 𝑏𝑘+1
2

𝑥𝑖 = 𝑏𝑘+1
3

𝑥𝑖 = 0, ∀ 𝑘 = 1,… , 𝐾 − 1 → 𝑓 2 𝑥𝑖 = 𝑓 3 𝑥𝑖 = 0
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Smoothing Splines (ESL 5.4)

 The objective function is the penalized RSS

𝑅𝑆𝑆 𝛽, λ = 𝑦 − 𝐻𝛽 𝑇 𝑦 − 𝐻𝛽 + λ𝛽𝑇Ω𝐻𝛽

Where 𝑦 = (𝑦1, … , 𝑦𝑛)
′, 𝛽 = (𝛽1, … , 𝛽𝑛)

′ and

(𝐻)𝑖𝑗= ℎ𝑗 𝑥𝑖 , and Ω𝑗𝑘 = ℎ𝑗׬
′′(𝑡)ℎ𝑘

′′(𝑡) 𝑑𝑡

 The estimate 
መ𝛽 = (𝐻𝑇𝐻 + λΩ𝐻)

−1𝐻𝑇𝑦 = 𝑆λ𝑦

 This is a generalized ridge regression (when Ω𝐻 = 𝐼, it’s a ridge regression)

 Can show that 𝑆λ = (𝐼 + λ𝑀)−1 where the matrix 𝑀 does not depend on 𝜆
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Nonparametric Logistic Regression (ESL 5.6)

 Consider logistic regression with a single x:

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝑔(𝑥)

And a penalized log-likelihood criterion

𝑙 𝑔, 𝜆 =෍

𝑖=1

𝑁

{𝑦𝑖 log(𝑝(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑥𝑖))} −
1

2
𝜆න𝑔′′ 𝑡 2𝑑𝑡

=෍

𝑖=1

𝑁

{𝑦𝑖𝑔 𝑥𝑖 − log(1 + 𝑒𝑔 𝑥𝑖 )} −
1

2
𝜆න𝑔′′ 𝑡 2𝑑𝑡

 Again can show that the optimal 𝑔 is a natural spline with knots at the 

datapoint

 Can use Newton-Raphson to do the fitting

53



Thin-Plate Splines (Multidimensional Splines) (ESL 5.7)

 The discussion up to this point has been one-dimensional. The higher-

dimensional analogue of smoothing splines are “thin-plate splines.” In 2-D, 

instead of minimizing

min
𝑔∈𝑆

෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑔(𝑥𝑖))
2+λන𝑔′′(𝑡)2𝑑𝑡

Minimized

min
𝑔∈𝑆

෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑔(𝑥𝑖))
2+λ𝐽(𝑓)

Where

𝐽 𝑓 = ඵ(
𝜕2𝑔(𝑥)

𝜕𝑥1
2 )2+(

𝜕2𝑔(𝑥)

𝜕𝑥1𝑥2
)2+(

𝜕2𝑔(𝑥)

𝜕𝑥2
2 )2𝑑𝑥1𝑑𝑥2
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Thin-Plate Splines

 The solution has the form:

𝑔 𝑥 = 𝛽0 + 𝛽𝑇𝑥 +෍

𝑗=1

𝑁

𝛼𝑗ℎ𝑗(𝑥)

Where

ℎ𝑗 𝑥 = η(|𝑥 − 𝑥𝑗|) and η 𝑧 = 𝑧2 log 𝑧2
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B-spline (ESL 5-Appendix)

 Since the space of spline functions of a particular order and knot sequence is a 

vector space, there are many equivalent bases for representing them (just as 

there are for ordinary polynomials.) 

 While the truncated power basis is conceptually simple, it is not too attractive 

numerically: powers of large numbers can lead to severe rounding problems. 

 In practice, we often use another basis: the B-spline basis, which allows for 

efficient computations even when the number of knots 𝐾 is large (each basis 

function has a local support).
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https://www.hds.utc.fr/~tdenoeux/dokuwiki/_media/en/splines.pdf

